An Economic Decision Support System based on Fuzzy Cognitive Maps with Evolutionary Learning Algorithm
نویسندگان
چکیده
Fuzzy cognitive map (FCM) is a universal tool for modeling dynamic decision support systems. It can be constructed by the experts or learned based on data. FCM models learned from data are denser than those created by experts. We developed an evolutionary learning approach for fuzzy cognitive maps based on density and system performance indicators. It allows to select only the most significant connections between concepts and receive the structure more similar to the FCMs initialized by experts. This paper is devoted to the application of the developed approach to model an economic decision support system. The learning and testing process was accomplished with the use of historical data.
منابع مشابه
Z-Cognitive Map: An Integrated Cognitive Maps and Z-Numbers Approach under Cognitive Information
Usually, in real-world engineering problems, there are different types of uncertainties about the studied variables, which can be due to the specific variables under investigation or interaction between them. Fuzzy cognitive maps, which addresses the cause-effect relation between variables, is one of the most common models for better understanding of the problems, especially when the quantitati...
متن کاملA new hybrid method using evolutionary algorithms to train Fuzzy Cognitive Maps
A novel hybrid method based on evolutionary computation techniques is presented in this paper for training Fuzzy Cognitive Maps. Fuzzy Cognitive Maps is a soft computing technique for modeling complex systems, which combines the synergistic theories of neural networks and fuzzy logic. The methodology of developing Fuzzy Cognitive Maps relies on human expert experience and knowledge, but still e...
متن کاملLearning Fuzzy Grey Cognitive Maps using Nonlinear Hebbian-based approach
Recently, Fuzzy Grey Cognitive Maps (FGCM) has been proposed as a FCM extension. It is based on Grey System Theory, that it has become a very effective theory for solving problems within environments with high uncertainty, under discrete small and incomplete data sets. The proposed approach of learning FGCMs applies the Nonlinear Hebbian based algorithm determine the success of radiation therap...
متن کاملFuzzy cognitive map ensemble learning paradigm to solve classification problems: Application to autism identification
Fuzzy cognitive maps have gained considerable research interest and widely used to analyze complex systems and making decisions. Recently they have been found large applicability in diverse domains for decision support and classification tasks. A new learning paradigm for FCMs is proposed in this research work, inheriting the main aspects of ensemble based learning approaches, such as bagging a...
متن کاملPredicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm
Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...
متن کامل